

Overview

- The 13 US House districts in NC are unconstitutionally racially gerrymanded according to courts
- Motivation from work done by Mattingly's team at Duke [1]
- Electorate about half Democrats and half Republicans
- Republicans have 10-3 advantage in House seats
- House Rules Chairman said "it is only 10-3 because they could not make it 1
- Fit a spatiotemporal CAR model to predict House election results
- Aggregate precinct-level predictions to get district-level outcomes
- Substantial missing data and no polling information in model
- Closely match true outcomes for 2018 House elections

- NC voting data for 9 years of US House races from 2002-2018 [3]
- Currently 2,704 precincts. Only model 2,045 (76%) because of name change missing data
- Use precinct-level vote counts and registration data from public record [2]
- Cleaning the data took a large amount of time and effort (19 public data set
- Caveats:
- Only complete precincts included
- Absentee and early voting not reported at precinct-level, so these were excluded ($\approx 3\%$ of votes)
- covariates formed using relative proportions of self-reported age and gender (ignored unreported)
- 4 out of the 117 races in the 9 years had a candidate running without major party opposition (e.g. Libertarian candidate or unopposed), creating outliers

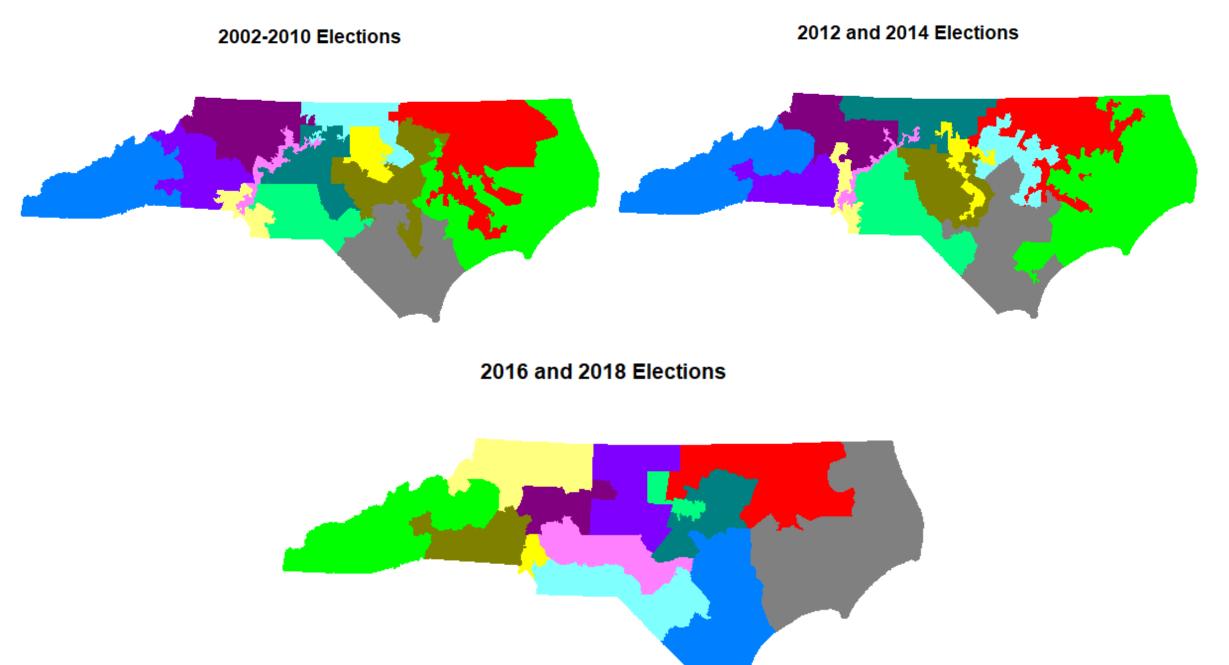


Figure: District Boundaries for each election of interest. The lines are redrawn after each census and, for NC, when they are ruled an unconstitutional gerrymander.

Predicting Elections and Examining Gerrymandering in North Carolina Using a Spatiotemporal CAR Model

Marschall Furman, Andrew Giffin, Matt Miller

North Carolina State University

	Model Sta
dered	Variable Definitions
	• Y_{kt} : Number of Democratic votes in precinct k for years
	• n_{kt} : Sum of Democratic and Republican votes in prec • θ_{kt} : Relative proportion of Democratic votes in precin
	• $\mathbf{x_{kt}}$: Vector of covariates in precinct k for year t
11-2" [2]	• ψ_{kt} : Latent component incorporating spatiotemporal
	Model form
	$Y_{kt} \sim \text{Binomial}(n_{kt}, \theta_{kt})$
	$\log\left(\theta_{kt}/(1-\theta_{kt})\right) = \mathbf{x}_{kt}^{T}\beta + \psi_{kt}$
	$\psi_{kt} = \beta_1 + \phi_k + (\alpha + \delta_k) \frac{t - \delta_k}{N}$
	$\phi_k \boldsymbol{\phi}_{-k}, \mathbf{W} \sim \text{Normal} \left(\frac{\rho_{int} \sum_{j=1}^K w_{k,j}}{\rho_{int} \sum_{j=1}^K w_{k,j}} \right)$
	$\delta_k \boldsymbol{\delta}_{-k}, \mathbf{W} \sim \text{Normal} \left(\frac{\rho_{slo} \sum_{j=1}^K w_{kj}}{\rho_{slo} \sum_{j=1}^K w_{kj}} \right)$
	$\beta \sim \operatorname{Normal}(0_{p \times 1}, 100000\mathbf{I}_p)$
	$ au_{int}^2, au_{slo}^2 \sim \text{Inverse Gamma}(1, .01)$
	$\rho_{int}, \rho_{slo} \sim \text{Uniform}(0, 1)$
	$\alpha \sim \text{Normal}(0, 1000)$
ges and	
SCS and	Model Pre
sets)	Figure: Actual and Predicted 2018 precinct-lev
	2018 Observed

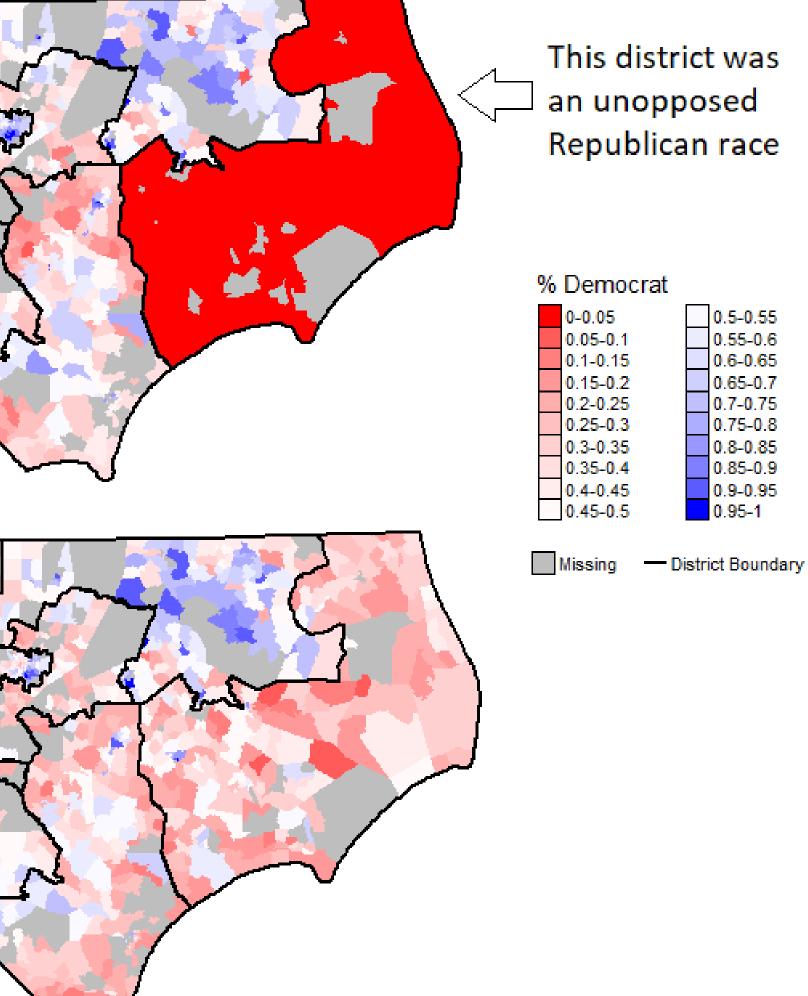
2018 Observed 2018 Predicted

atement

vear tecinct k for year teinct k for year t

effects in precinct k for year t

$$\frac{1}{N} \frac{1}{N} \frac{1}{\sum_{j=1}^{K} w_{kj} \phi_j}{w_{kj} + 1 - \rho_{int}}, \frac{\tau_{int}^2}{\rho_{int} \sum_{j=1}^{K} w_{kj} + 1 - \rho_{int}} \right)$$


$$\frac{1}{\sum_{j=1}^{K} w_{kj} \delta_j}{w_{kj} + 1 - \rho_{slo}}, \frac{\tau_{int}^2}{\rho_{slo} \sum_{j=1}^{K} w_{kj} + 1 - \rho_{slo}} \right)$$

$$0\mathbf{I}_p)$$

$$01)$$

ediction

level outcomes, by % of Democratic votes

- "("slope".)

- $\sum_{j=1}^{K} \phi_j = \sum_{j=1}^{K} \delta_j = 0.$
- Predicted on 2018

(Intercep I(Pres. Elec. Year % Reg. Ma % Reg. Whi % Reg. Age 26-4 % Reg. Age 41-6 % Reg. Age 66-

Table: Left. Parameter posterior summary. Medians from credible intervals not containing 0 in bold. Right. Total Democratic district winners calculated by summing precinct results from the fitted counts and 2018 prediction and the data with missing precincts.

- rely heavily on polling data

Model Explanation

• Many spatiotemporal CAR models in literature

• Used CARBayesST package [4], with 8 possible model options

• Decided on this model to capture temporal trends in each precinct

• The random effect ψ_{kt} incorporates both the spatial effect ϕ_k and linear spatiotemporal trend $(\alpha + \delta_k \frac{t-t}{N})$ for that individual location k. (int and slo refer to "intercept" and

• ρ_{int} and ρ_{slo} are analogous to spatial dependence parameter in the original CAR model • The terms ϕ_k and δ_k are modeled using their full conditional distributions, as determined by their neighbors (specified in adjacency matrix \mathbf{W} .)

• $\overline{t} = N^{-1} \sum_{t=1}^{N} t$, so $(t - \overline{t})/N \in [-\frac{1}{2}, \frac{1}{2}]$

• $t = 1, \ldots, T = 9$ is the number of years and $k = 1, \ldots, K = 2045$ is the number of precincts

Results and Conclusions

• Trained model on data from 2002-2016 elections

• Burn-in of 5,000 and sample of 50,000, thinning every 10, making posterior samples 5,000. • Visual inspection of trace plots shows parameters have converged, though effect sample size for some is small. Posterior SDs are small enough not to worry.

	Median	2.5%	97.5%
pt)	3.86	3.79	3.95
ar)	0.10	0.10	0.10
ale	-2.43	-2.66	-2.28
ite	-2.61	-2.63	-2.59
-40	-0.45	-0.49	-0.39
-65	-1.77	-1.82	-1.73
6+	0.04	-0.01	0.09
$\frac{.2}{int}$	0.55	0.48	0.63
$\frac{2}{\frac{2}{12}}$	1.08	0.92	1.25
lint	0.19	0.14	0.25
slo	0.41	0.33	0.51

* Currently in dispute due to alleged ballot tampering.

• Parameter posterior summaries reflect common knowledge about voters and voter turnout (Dems turn out more in presidential election years, males, whites and older generations) vote more Republican than their counterparts)

• Model is close to correct number of winners for almost every year, despite missing data • Impressive that this model did so well despite not using polling data. All popular models

References

[1] Herschlag et al. (2018). "Quantifying Gerrymandering in North Carolina". arXiv.

[2] Fain, Travis. "Partisan gerrymandering case could force another congressional primary in NC". August 27,

[3] North Carolina State Board of Elections, ncsbe.gov

[4] Lee D, Rushworth A, Napier G (2018). "Spatio-Temporal Areal Unit Modeling in R with Conditional Autoregressive Priors Using the CARBayesST Package." Journal of Statistical Software, Articles, 84(9), 139.

^{2018.} wral.com